Chem. Ber. 119, 777-793 (1986)

# Synthese und Solvolyse von Cyclopropylidenalkylestern

Michael Hanack\* und Ferdinand Pradl

Institut für Organische Chemie der Universität Tübingen, Lehrstuhl für Organische Chemie II, Auf der Morgenstelle 18, D-7400 Tübingen 1

Eingegangen am 12. Juli 1985

Zur Untersuchung der Solvolysereaktionen der Cyclopropylidenalkylester 8, 9 und 10b, f, g wurden die Cyclopropylidenalkohole 8a, 9a und 10a synthetisiert. Die Darstellung von 2-Cyclopropylidencyclobutanol (10a) gelang durch Wittig-Reaktion des Tetrahydropyranylethers 28 mit Cyclopropylidentriphenylphosphoran und Hydrolyse des entstehenden THP-Ethers 29. Die Solvolyse der Cyclopropylidenalkylester 8f und 10b in Lösungsmitteln unterschiedlicher Ionisierungsstärke ergab Produkte, die sich sowohl von den mesomeren Allylkationen 11  $\leftrightarrow$  11' bzw. 14 als auch von den unter Ringöffnung entstandenen Kationen 13 bzw. 36 ableiten. Umlagerungsreaktionen zu den Vinylkationen 12 bzw. 15 wurden nicht beobachtet.

#### Synthesis and Solvolyses of Cyclopropylidenealkyl Esters

The cyclopropylidene alcohols 8a, 9a, and 10a are synthesized to study the solvolyses reactions of cyclopropylidenealkyl esters 8, 9, and 10b, f, g. The preparation of 2-cyclopropylidenecyclobutanol (10a) is achieved by Wittig reaction of its tetrahydropyranyl ether 28 with cyclopropylidenetriphenylphosphorane and hydrolysis of the tetrahydropyranyl ether 29 formed. The solvolyses of cyclopropylidenealkyl esters 8f and 10b in solvents of varying ionizing power yield products formed via the intermediate mesomeric allyl cations  $11 \leftrightarrow 11'$  or 14, respectively, as well as from the ring-opened cations 13 or 36, respectively. Rearrangement reactions to form vinyl cations 12 or 15 are not observed.

Das Verhalten von Allylderivaten bei Solvolysereaktionen war Gegenstand vieler mechanistischer Untersuchungen<sup>1)</sup>. So wurde vor allem der Einfluß der Reaktionsbedingungen (Lösungsmitteleffekte)<sup>2)</sup> und von Substituenten in  $\alpha$ -,  $\beta$ - und  $\gamma$ -Position der Allylderivate<sup>3)</sup> auf Mechanismus, Kinetik und Produktverteilung bei Solvolysereaktionen ausführlich studiert.

Solvolysereaktionen von Allylderivaten, bei denen die allylische Doppelbindung Bestandteil einer Methylencyclopropanbindung ist, sind dagegen kaum untersucht worden. Beschrieben wurde lediglich die Solvolyse des 2-Cyclopropylidenethylchlorids (1a) in 80% Dioxan/Wasser, wobei über das mesomere Kation 2 die Alkohole 1b und 3 im Verhältnis ca. 1:1 erhalten werden<sup>4</sup>).

Bei dem zunächst entstehenden Allylkation 2 erhebt sich die Frage, inwieweit die Mesomerie eines Allylkations durch die Methylencyclopropanbindung gestört wird, wobei zu beachten ist, daß die mesomere Grenzform 2b ein substituiertes Cyclopropylkation darstellt. Dieses kann leicht durch disrotatorische Ringöffnung in ein Allylkation 4 übergehen<sup>5</sup>, wodurch offenkettige Solvolyseprodukte entstehen, wie es hier der Fall ist<sup>4</sup>.



Auch bei der Hydrolyse des Spiropentylchlorids 5<sup>6)</sup> wird durch eine zweimalige Cyclopropylallyl-Umlagerung das Allylkation 4 erhalten; das durch eine allylische Doppelbindung stabilisierte Cyclopropylkation 2b kann auch hier nicht abgefangen werden.

Auch Cyclopropyltosylat<sup>7)</sup> und 1-Phenylcyclopropyltosylat<sup>8)</sup> ergeben bei der Acetolyse nur die entsprechenden Allylacetate. Mit dem durch einen Cyclopropanring stabilisierten Kation 6 wurde dagegen erstmals ein Cyclopropylkation unter Solvolysebedingungen abgefangen<sup>9)</sup>. Auch substituierte 1-Ethinylcyclopropyl-Kationen 7 konnten in Abhängigkeit vom Substituenten R bei Solvolysereaktionen der entsprechenden Tosylate nachgewiesen werden<sup>10)</sup>.

Im folgenden berichten wir über Darstellung und Solvolysereaktionen der Cyclopropylidenalkylsysteme 8, 9 und 10.

Die in Lösungsmitteln verschiedener Ionisierungsstärke erhaltenen Solvolyseprodukte sollten auch darüber Aufschluß geben, ob die aus 8b, c, f, g, 9b, c, f, g und



10b, c, f, g entstehenden Allylkationen 11, 11' und 14 in die stabilisierten Vinylkationen (Cyclopropylidenmethyl-Kation)<sup>11)</sup> 12 und 15 umlagern können.

## Synthesen

Für die Darstellung der reaktiven Cyclopropylidenalkyl-Derivate 8-10 wurden zunächst die entsprechenden Alkohole 8a - 10a benötigt. 8a und 9a wurden durch selektive Reduktion von 3-Cyclopropyliden-2-butanon (17a) bzw. 2-Cyclopropylidenpropanal (17b) mit Lithiumaluminiumhydrid gewonnen. 17a und b wurden wie beschrieben<sup>12)</sup> durch Wittig-Reaktion und Deketalisierung aus den Vorstufen 16 erhalten. 16a war einfacher als beschrieben<sup>13)</sup> durch Ketalisierung von Biacetyl mit Orthoameisensäure-triethylester zugänglich. Die Umsetzung des primären Alkohols 9a mit p-Tosylchlorid in Pyridin<sup>14)</sup> ergab nicht das Tosylat 9b, sondern zu 90% flüchtige Produkte, die nicht näher untersucht wurden. Die analogen Reaktionen des sekundären Alkohols 8a und seines Lithiumsalzes führten ebenfalls nicht, wie erwartet, zum Tosylat 8b, sondern neben flüchtigen Produkten zum Tosylat 18b. Zur Erklärung nehmen wir an, daß das zunächst entstehende Tosylat 8b durch Eliminierung von p-Toluolsulfonsäure teilweise zu einem flüchtigen Butadienderivat sowie durch Umlagerung nach Ionenpaarrückkehr<sup>15)</sup> zum stabileren Tosylat 18b reagiert.



Die weniger reaktiven Dinitrobenzoate 8f und 9f konnten nach bekannten Methoden<sup>16</sup> dargestellt werden.

Die Strukturzuordnung des Tosylats **18b** wurde aufgrund der <sup>1</sup>H- und <sup>13</sup>C-NMR-Spektren getroffen. Im <sup>1</sup>H-NMR-Spektrum weist die zusätzliche Aufspaltung des vinylischen Protons durch Allylkopplung (1.6 Hz) auf den 1-Methyl-1propenyl-Rest und das AA'BB'-System der Cyclopropylprotonen<sup>17</sup> auf den 1,1disubstituierten Cyclopropanring hin.

Ein weiterer Beweis für die Struktur 18b ist ein gekoppeltes <sup>13</sup>C-NMR-Spektrum, das neben den Signalen der Tosylgruppe ein Singulett und ein Dublett im vinylischen Bereich zeigt. Charakteristisch für Verbindungen mit Cyclopropylidenstruktur wie 8 ist ein breites, schlecht aufgelöstes Multiplett der Cyclopropylprotonen, ein Quartett ohne Feinaufspaltung des Methinprotons und ein meist gut aufgelöstes Quintett (1.6 Hz) der allylischen Methylgruppe durch <sup>5</sup>J-Kopplung mit den Cyclopropylprotonen. Zudem sind im gekoppelten <sup>13</sup>C-NMR-Spektrum die Signale von beiden vinylischen C-Atomen Singuletts.

Sämtliche Versuche, den Alkohol **8a** in das Bromid **8c** zu überführen, blieben erfolglos. Mit Triphenylphosphan und Tetrabrommethan<sup>18)</sup> sowie mit Triphenylphosphan und Brom<sup>19)</sup> wurde stets das umgelagerte Bromid **18c** als Hauptprodukt

erhalten. Dies wird verständlich, wenn man berücksichtigt, daß in beiden Fällen 19 als Zwischenstufe vorliegen dürfte. Auch die Bromierungen von 8a mit Dimethylsulfid und *N*-Bromsuccinimid<sup>20</sup> sowie mit Chlortrimethylsilan und Lithiumbromid<sup>21</sup> führten zum Bromid 18c. Auch durch Umsetzung von 8a mit Methansulfonylchlorid und Lithiumbromid<sup>22</sup> konnte das Bromid 8c nicht erhalten werden.





2-Cyclopropylidencyclobutanol (10a) sollte ausgehend von 2-Hydroxycyclobutanon (20)<sup>23)</sup> gewonnen werden. Obwohl Wittig-Reaktionen mit vergleichbaren Acyloinen erfolgreich durchgeführt wurden<sup>24)</sup>, gelang es nicht, auf diese Weise das Acyloin 20 direkt in 10a zu überführen. Dagegen konnten die entsprechenden Methyl- und Ethylether 22a und b mit Cyclopropylidentriphenylphosphoran<sup>25)</sup> zu 23 und 10d umgesetzt werden. Die Darstellung der Ether 22 gelang direkt aus dem Bis(trimethylsilyl)ether 21<sup>26)</sup> mit chlorwasserstoff-gesättigtem Diethylether und stöchiometrischen Mengen Methanol bzw. Ethanol bei Raumtemperatur. Sämtliche Versuche, 22a wie beschrieben<sup>27)</sup> aus 24 zu erhalten, ergaben stets ein Gemisch von 22a und dessen Dimethylacetal 25.

Trotz langwieriger Versuche konnten wir keinen Weg finden, die Ether 23 bzw. 10d in 2-Cyclopropylidencyclobutanol (10a) zu überführen: Die Reaktionen des Methylethers 23 mit Chlortrimethylsilan/Natriumiodid<sup>28)</sup> sowie mit Iodtrimethylsilan und Pyridin<sup>29)</sup> ergaben bereits bei 0°C neben Polymeren eine unbekannte Verbindung, deren spektroskopische Daten mit dem Alkohol 10a oder dessen intermediär auftretenden Trimethylsilylether nicht vereinbar waren. Mit Iodtrimethylsilan in Chloroform oder Tetrachlormethan<sup>30)</sup> entstand neben Polymerisationsprodukten nur das umgelagerte Iodid 26. Mit Lewis-Säuren wie Bortrifluorid<sup>31)</sup> und Eisen(III)-chlorid<sup>32)</sup> reagierte der Ether 23a in Gegenwart von Acetanhydrid zu einem Acetat, dessen <sup>1</sup>H-NMR-Spektrum eine Methylencyclopropan-Struktur ausschloß.

Die Spaltung der Ether 23 und 10d mit *n*-Butyllithium<sup>33)</sup> führte bei Temperaturen zwischen -78 °C und Raumtemperatur stets überwiegend zum Kohlenwasserstoff 27. Auch der Einsatz von *tert*-Butyllithium führte nicht zum Alkohol 10a.

Die Darstellung des Alkohols 10a gelang schließlich durch Umsetzung des Tetrahydropyranylethers 28<sup>27)</sup> mit Cyclopropylidentriphenylphosphoran zu 29 und Abspalten der Schutzgruppe. Die Strukturen von 29 und 10a wurden durch die NMR-Spektren gesichert. Der THP-Ether 29 weist zwei Asymmetriezentren auf und liegt damit als ein Gemisch zweier Diastereomerer vor, was zu einer Verdoppelung von fast allen Signalen führt.



Aus dem Alkohol 10a wurden nach bekannten Verfahren die Derivate 10b<sup>14</sup>, 10f<sup>16</sup> und das 4-(Dimethylamino)benzolsulfonat (Damsylat) 10g<sup>34</sup> dargestellt.

### Solvolysen

Soweit nicht anders angegeben, wurden die Solvolysen mit Triethylamin als Puffer und Brombenzol als internem Standard durchgeführt. Die Zusammensetzung der Solvolyseprodukte wurde gaschromatographisch ermittelt. Sie wurden zusätzlich durch ihre Massenspektren aus GC/MS-Kopplung und ihre <sup>1</sup>H-NMR-Spektren der durch PGC isolierten Verbindungen identifiziert.

Die Ergebnisse der Solvolysen des Dinitrobenzoats 8f und des Tosylats 18b sind in Tab. 1 zusammengefaßt.



Die Solvolyseprodukte **8a, d, e** und **18a, d, e** leiten sich von den Allylkationen 11 und 11', die offenkettigen Produkte **30** von dem durch Cyclopropylallyl-Umlagerung entstandenen Kation **13** ( $R = CH_3$ ) ab. Das Keton **31** ist vermutlich durch basenkatalysierte Ringöffnung<sup>35)</sup> des Cyclopropanols **18a** entstanden.

Unter den Solvolyseprodukten wurde Cyclopropylisopropylketon  $(32)^{36}$ , das in wäßrigen Lösungsmittelgemischen aus dem Vinylkation 12 (R = CH<sub>3</sub>) gebildet würde, nicht gefunden, d. h. eine Umlagerung des Allylkations  $11 \leftrightarrow 11'$  durch Methylwanderung in das Vinylkation 12 (R = CH<sub>3</sub>) tritt nicht ein.

Bei der Solvolyse des substituierten Vinylcyclopropyltosylats 18b konnte nicht nur ein vinylisch substituiertes Cyclopropylkation 11', sondern erstmals auch dessen mesomere Grenzform 11 abgefangen werden. Dies deutet auf eine hohe Stabilisierung des Cyclopropylkations 11' hin, da es erst auf der Stufe des äußeren Ionenpaares<sup>37</sup>) mit dem Lösungsmittel reagiert. Eine Aussage über die Ladungs-

verteilung im Allylkation  $11 \leftrightarrow 11'$  aus dem Verhältnis der Solvolyseprodukte ist nur mit Vorsicht zu treffen, da das Kation 11' durch Cyclopropylallyl-Umlagerung zu 13 irreversibel<sup>38)</sup> dem mesomeren System entzogen wird.

Tab. 1. Solvolyseprodukte des Dinitrobenzoats 8f und des Tosylats 18b in verschiedenen Lösungsmitteln (TFE = 2,2,2-Trifluorethanol)

| Solvolysiertes | Solvens      | Produkte in % |           |    |            |            |            |            |            |             |    |                      |  |
|----------------|--------------|---------------|-----------|----|------------|------------|------------|------------|------------|-------------|----|----------------------|--|
| Derivat        |              | 84            | <u>8d</u> | 8e | <u>18a</u> | <u>18d</u> | <u>18e</u> | <u>30a</u> | <u>30ъ</u> | <u> 30c</u> | 31 | nicht identif. Prod. |  |
| <u>8f</u>      | 1007. TFE    | -             | -         | 23 | -          | -          | 29         | -          | -          | 46          | -  | 2                    |  |
|                | 80% TFE/H20  | 18            | -         | 11 | 17         | -          | 13         | 17         | -          | 18          | -  | 6                    |  |
|                | 50% ELOH/H20 | 43            | 10        | -  | 16         | 9          | -          | 9          | 2          | -           | -  | 11                   |  |
| <u>18b</u>     | 100% TFE     | -             | -         | 13 | -          | -          | 25         | -          | -          | 59          | -  | 3                    |  |
|                | 80% TFE/H20  | 16            | -         | 7  | 18         | -          | 11         | 24         | -          | 24          | -  | -                    |  |
|                | 50% ELOH/H20 | 27            | 15        | -  | 19         | 14         | -          | 11         | 6          | -           | 2  | 6                    |  |

Die als "product spread"<sup>1)</sup> bezeichnete unterschiedliche Produktzusammensetzung in den Solvolysen der doppelbindungsisomeren Ester **8f** und **18b** kann nach dem auf Allylkationen übertragenen Ionenpaarkonzept<sup>37)</sup> darauf zurückgeführt werden, daß das Allylkation **11**  $\leftrightarrow$  **11'** teilweise bereits auf der Stufe der noch unsymmetrischen inneren Ionenpaare abgefangen wird. Dadurch wird die mesomere Grenzform mit der Struktur des solvolysierten Substrats bevorzugt. Bei den Solvolysen des Tosylats **18b** muß auch eine mit dem Austritt der Tosylgruppe konzertierte Ringöffnung zum Allylkation **13** als Konkurrenzreaktion in Betracht gezogen werden. Vor allem in den wenig nucleophilen Lösungsmitteln TFE und TFE/Wasser ergibt das Tosylat **18b** erheblich mehr Ringöffnungsprodukte **30** als das Dinitrobenzoat **8f**. Im stärker nucleophilen EtOH/H<sub>2</sub>O-Gemisch wird die konzertierte Ringöffnung zurückgedrängt.

Alle Solvolysen des Dinitrobenzoats **9f** in absol. TFE, 80% TFE/H<sub>2</sub>O und 50% EtOH/H<sub>2</sub>O verliefen im Sinne einer S<sub>N</sub>2-Reaktion am Carbonyl-Kohlenstoff: Einziges Solvolyseprodukt war stets der Alkohol **9a**, zudem konnten die Ethyl- und Trifluorethylester **33b** im Gaschromatogramm nachgewiesen werden. Das primäre Dinitrobenzoat **9f** zeigt damit ebenso wie das Cyclopropylidenethylchlorid **1a**<sup>4</sup>) und das unsubstituierte Allylchlorid<sup>1</sup> keine Tendenz zur Bildung eines primären Allylkations. Ein in Allylposition doppelt gebundener Cyclopropanring wie z. B. in Kation **2** liefert offensichtlich keinen Beitrag zur Stabilisierung eines primären Allylkations.

Da das Dinitrobenzoat **10f** in den oben genannten Lösungsmitteln und in 80proz. Hexafluorisopropylalkohol (HFIP/H<sub>2</sub>O) ebenfalls nach  $S_N2$  solvolysierte, wurden die Solvolysen mit dem Tosylat **10b** durchgeführt. Die in Tab. 2 zusammengefaßten Solvolyseprodukte **10a, d, e, 34a - c** und **35a - e** leiten sich alle aus dem Allylkation **14** und dem aus der Cyclopropylallyl-Umlagerung resultierenden Kation **36** ab. Damit zeigen die Solvolyseprodukte auch hier, daß eine Umlagerung zum Vinylkation **15**, aus dem Dicyclopropylketon (**37**)<sup>11</sup> entstehen sollte, nicht eingetreten war.



Tab. 2. Solvolyseprodukte des Tosylats **10b** in verschiedenen Lösungsmitteln und des Damsylats **10g** in 67proz. Schwefelsäure (TFE = 2,2,2-Trifluorethanol, TFA = Trifluoressigsäure)

| Solvolysiertes | Solven <b>s</b>        | Produkte in % |            |            |            |            |            |            |            |            |            |            |                     |
|----------------|------------------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------------|
| Derivat        |                        | <u>10a</u>    | <u>10d</u> | <u>10e</u> | <u>34a</u> | <u>34b</u> | <u>34c</u> | <u>35a</u> | <u>356</u> | <u>35c</u> | <u>35a</u> | <u>35e</u> | nicht identif.Prod. |
| <u>106</u>     | 100% TFE               | -             | -          | 30         | -          | -          | 21         | -          | -          | 44         | -          | -          | -                   |
|                | 80% TFE/H20            | 22            | -          | 16         | 6          | -          | 14         | 22         | -          | 18         | -          | -          | 2                   |
|                | 50% EtOH/H20           | 39            | 22         | -          | 13         | 8          | -          | 13         | 4          | -          | -          | -          | 1                   |
|                | 80% HFIP /H 0          | 32            | -          | -          | 8          | -          | -          | 26         | -          | -          | 24         | -          | 10                  |
|                | 100% TFA               | -             | -          | -          | -          | -          | -          | -          | -          | -          | -          | 52         | 48                  |
| 10g            | 67% н <sub>2</sub> so4 | -             |            |            | ,          | -          | -          | 33         | -          | -          | -          | -          | 60 <b>*</b> )       |

<sup>a)</sup> Anteil an Dimerisierungsprodukten = 44%.

Wie aus Tab. 2 ersichtlich ist, trat auch bei der Solvolyse von 10b in den stärker ionisierenden und schwächer nucleophilen Lösungsmitteln 80proz. HFIP/H<sub>2</sub>O und absol. Trifluoressigsäure keine Umlagerung des Allylkations 14 in das Vinylkation 15 ein. Die erhöhte Lebensdauer des Allylkations 14 führte lediglich zu vermehrter Cyclopropylallyl-Umlagerung, wie die sehr hohen Anteile an 35a, 35b und 35e und die vergleichsweise geringe Bildung des Alkohols 34a zeigen. Derselbe Effekt wurde bei der Solvolyse des Damsylats 10g in 67proz. Schwefelsäure beobachtet.

Das durch die 1-Cyclobutenylgruppe stabilisierte Cyclopropylkation 14b konnte bei fast allen Solvolysen des Tosylats 10b abgefangen werden. Dabei nahm, wie bei 8f und 18b, in der Reihe absol. TFE, 80proz. TFE/H<sub>2</sub>O und 50proz. EtOH/ $H_2O$  der Anteil der Produkte mit Cyclopropylidenstruktur 8 zu, während der Anteil 35 mit geöffnetem Cyclopropanring bei etwa gleichbleibender Menge an Cyclopropylderivaten 34 abnahm.

Daß eine Ringverengung des Allylkations 14 zum Vinylkation 15 in keiner der kinetisch kontrollierten Solvolysen beobachtet werden konnte, zeigt, daß die Aktivierungsenergie für den Bruch der C-C-Bindung im Cyclobutanring zu hoch ist. Dies dürfte daran liegen, daß das nur teilweise gefüllte p-Orbital im Allylkation 14 zur Vierringebene senkrecht steht und so mit der zu lösenden Bindung nicht wechselwirken kann.

Über die relative Stabilität der Kationen 14 und 15 lassen sich aus diesen Ergebnissen keine quantitativen Schlüsse ziehen. Wie frühere Arbeiten<sup>39)</sup> gezeigt haben, tritt auch eine Ringerweiterung des Vinylkations 15 zum Allylkation 14 unter Solvolysebedingungen nicht ein. Die bessere Wechselwirkung des vakanten p-Orbitals in 15<sup>11)</sup> mit dem in der gleichen Ebene liegenden Cyclopropylidenring führt dagegen zur Umlagerung in das Cyclobutenylkation 38<sup>39)</sup>.



Wir danken dem Fonds der Chemischen Industrie für finanzielle Unterstützung.

#### **Experimenteller** Teil

Schmelz- und Siedepunkte sind unkorrigiert. – <sup>1</sup>H-NMR: Varian EM 360, Bruker WP 80, HFX 90, WH 90 und WH 400. – IR-Spektren: Philips PYE Unicam SP 1000. – Massenspektren: Varian MAT 311 und 1125 mit Gaschromatograph Carlo Erba Fractorap 2900.

Gaschromatographie: Für gepackte Säulen: Hewlett-Packard 5720 A (FID und 5750 G, FID und WLD); Stahlsäulen (2.5 m  $\times$  2 mm), belegt mit 10% Carbowax 20 M, OV 17, SE 30 und UCC W 982 auf Chromosorb PAW-DMCS 80/100 und Gaschrom Q 80/100; Trägergas Stickstoff. – Für Kapillarsäulen: Carlo Erba FTV 2150 mit FID, Glaskapillarsäulen (20-25 m  $\times$  0.3 mm), belegt mit Carbowax 20 M, SE 30 und UCC W 982; Auswertung mit HP-Integrator 3385 A; präparative Gaschromatographie: HP 5720 mit WLD, Stahlsäulen (2.5-3 m  $\times$  4 mm), belegt mit 10% und 8% Carbowax 20 M, 5% Carbowax 20 M + 2% KOH und 10% EGS auf Chromosorb PAW 80/100 und Chromosorb PAW-DMCS 80/100; Trägergas Helium.

3,3-Diethoxy-2-butanon (16a): Ein Gemisch aus Biacetyl (17.2 g, 0.20 mol), Orthoameisensäure-triethylester (35 ml), absol. Ethanol (30 ml) und p-Toluolsulfonsäure (0.50 g, 2.9 mmol) wird bei 75–80 °C im Wasserbad gerührt, wobei in 2 h etwa 15 ml Ameisensäureethylester (Sdp. 52-56 °C/760 Torr) über eine Vigreuxkolonne abdestilliert werden. Anschließend wird mit Triethylamin (0.9 ml, 6.5 mmol) neutralisiert und überschüssiges Ethanol bei Normaldruck abdestilliert. Der Rückstand wird i. Vak. fraktioniert, Sdp. 51-56 °C/ 1333 Pa, Ausb. 24.0 g (75%). – IR (Film): 1733 (C=O) cm<sup>-1</sup>. – <sup>1</sup>H-NMR:  $\delta = 1.2$  (t, 6H, CH<sub>2</sub>CH<sub>3</sub>), 1.4 (s, 3H, CH<sub>3</sub>-4), 2.25 (s, 3H, CH<sub>3</sub>-1), 3.45 (q, 4H, CH<sub>2</sub>).

3-Cyclopropyliden-2-butanol (8a) und 2-Cyclopropyliden-1-propanol (9a): Zu Lithiumaluminiumhydrid (1.0 g, 26.3 mmol) in absol. Ether (50 ml) werden unter Rühren das Keton 17a bzw. der Aldehyd 17b (50 mmol) in absol. Ether (10 ml) so getropft, daß der Ether mäßig siedet. Nach 30 min Erhitzen unter Rückfluß wird gekühlt, und dann zur Aufarbeitung in geringen zeitlichen Abständen Wasser (1 ml), 15proz. Natronlauge (1 ml) und Wasser (3 ml) zugetropft, und 30 min wird bei Raumtemp. gerührt. Der dabei entstandene weiße und flockige Niederschlag von hygroskopischen, basischen Hydroxiden ließ sich leicht abfiltrieren. Die so wasserfrei erhaltene etherische Lösung wird i. Vak. eingeengt und in einer Spaltrohrkolonne destilliert.

**8a**: Sdp. 67°C/1733 Pa, Ausb. 3.8 g (68%). – IR (Film): 3360 (OH), 3040 (C-H im Dreiring), 1705 cm<sup>-1</sup> (C=C). – <sup>1</sup>H-NMR (80 MHz):  $\delta = 0.98$  (m, 4H, CH<sub>2</sub>), 1.26 (d, 3H,

CH<sub>3</sub>-1), 1.78 (quint, 3 H, =CCH<sub>3</sub>,  ${}^{5}J_{H} = 1.6$  Hz), 2.13 (s, 1 H, OH); 4.41 (q, 1 H, 2-H). –  ${}^{13}$ C-NMR:  $\delta = 0.0$  (t, CH<sub>2</sub>,  ${}^{1}J_{H} = 158$ ,  ${}^{2}J_{H} = 3$  Hz); 2.7 (t), 12.6, 21.4 (2 × q, 2 × CH<sub>3</sub>), 71.2 (d, C-2), 115.9 (s, C-1'), 127.5 (s, C-3). – MS: m/z = 112 (M<sup>+</sup>), 97 (– CH<sub>3</sub>), 94 (– H<sub>2</sub>O), 79 (– CH<sub>3</sub>OH).

C<sub>7</sub>H<sub>12</sub>O (112.2) Ber. C 75.00 H 10.71 Gef. C 74.46 H 10.75

**9a**: Sdp. 74°C/2399 Pa, Ausb. 3.8 g (78%). – IR (Film): 3410 (OH), 3080 (C–H im Dreiring), 1690 cm<sup>-1</sup> (C=C). – <sup>1</sup>H-NMR:  $\delta = 1.00$  (m, 4H, Dreiring-CH<sub>2</sub>), 1.80 (quint, 3H, CH<sub>3</sub>, <sup>5</sup>J<sub>H</sub> = 1.6 Hz), 1.95 (s, 1H, OH), 4.15 (quint, 2H, CH<sub>2</sub>O, <sup>5</sup>J<sub>H</sub> = 1.4 Hz). – <sup>13</sup>C-NMR:  $\delta = 0.5$ , 2.1 (2 × t, Dreiring-CH<sub>2</sub>), 17.6 (q, CH<sub>3</sub>), 66.4 (t, CH<sub>2</sub>O), 117.2 (s, C-1'), 123.9 (s, C-2). – MS: m/z = 98 (M<sup>+</sup>), 83 (– CH<sub>3</sub>).

C<sub>6</sub>H<sub>10</sub>O (98.1) Ber. C 73.47 H 10.20 Gef. C 73.33 H 10.04

2-Ethoxycyclobutanon (22b): In absol. Ether (100 ml) wird bei Raumtemp. Chlorwasserstoff bis zur Sättigung eingeleitet. Dann werden 16 g (0.35 mol) Ethanol zugegeben und unter Rühren 20 g (87 mmol) 1,2-Bis(trimethylsiloxy)-1-cyclobuten (21)<sup>23)</sup> in wenigen min zugetropft. Nach 30 min (GC-Kontrolle) ist die Reaktion beendet, und es wird mit Wasser verdünnt. Die wäßrige Phase wird mit Ether extrahiert, die organische Phase mehrmals mit Wasser gewaschen und getrocknet. Nach Entfernen des Lösungsmittels bei Normaldruck und Destillation des Rückstandes i. Vak. wird das Produkt gaschromatographisch rein erhalten. Sdp. 54°C/1866 Pa, Ausb. 4.2 g (42%). – IR (Film): 2880 (CH von OCH<sub>2</sub>), 1800 cm<sup>-1</sup> (C=O). – <sup>1</sup>H-NMR:  $\delta = 1.20$  (t, 3H, CH<sub>3</sub>), 1.5–3.0 (m, 4H, Ring-CH<sub>2</sub>), 3.60 (q, 2H, CH<sub>2</sub>), 4.65 (t, 1H, 2-H).

C<sub>6</sub>H<sub>10</sub>O<sub>2</sub> (114.1) Ber. C 63.14 H 8.83 Gef. C 63.43 H 8.97

(2-Cyclopropylidencyclobutyl)-methyl-ether (23) und -ethyl-ether (10d): Aus einer Natriumhydrid-Suspension (26 g) mit 60% Paraffin (enthält 16.3 g = 680 mmol Natriumhydrid) wird mit Petrolether (30-50°C) und absol. 1,2-Dimethoxyethan (DME) das Paraffin ausgewaschen. Nun werden absol. DME (700 ml), (3-Brompropyl)triphenylphosphoniumbromid<sup>25</sup> (158 g, 340 mmol) und eine katalytische Menge Ethanol zugefügt, und unter Stickstoff wird 4 h bei 70°C gerührt. Danach wird ebenfalls bei 70°C 22a oder 22b (170 mmol) in DME zugetropft und weitere 3 h bei gleicher Temp. gerührt. Nach Erkalten des Reaktionsansatzes wird mit Eiswasser (1 l) hydrolysiert, mehrmals mit Petrolether (30-50°C) extrahiert, die organische Phase zweimal mit Natriumchloridlösung und dreimal mit Wasser gewaschen und über Natriumsulfat getrocknet. Nun wird i. Vak. das Lösungsmittel entfernt und fraktioniert.

**23**: Sdp. 53 °C/1596 Pa, Ausb. 8.9 g (42%). – IR (Film): 1630 cm<sup>-1</sup> (C=C). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.06$  (m, 4H, Cyclopropyl-H), 1.7–2.7 (m, 4H, Cyclobutyl-H), 3.37 (s, 3H, CH<sub>3</sub>), 4.47 (m, 1H, CH). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 1.5$ , 2.6 (t, Cyclopropyl-C), 24.0, 26.0 (t, Cyclobutyl-C), 55.5 (q, CH<sub>3</sub>), 79.3 (d, CH), 113.1 (s, Cyclopropyliden-C-1), 136.1 (s, Cyclobutyl-C-2). – MS: m/z = 123 (M<sup>+</sup> – H), 109 (– CH<sub>3</sub>), 91 (C<sub>2</sub>H<sub>7</sub><sup>+</sup>).

C<sub>8</sub>H<sub>12</sub>O (124.1) Ber. C 77.36 H 9.75 Gef. C 77.50 H 9.89

**10d**: Sdp.  $58 - 60 \,^{\circ}C/1596$  Pa, Ausb. 10.1 g (43%). – IR (Film): 3060 (Cyclopropyl-C-H), 2880 cm<sup>-1</sup> (C-H von OCH<sub>2</sub>). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.04$  (m, 4H, Cyclopropyl-H), 1.20 (t, 3H, CH<sub>3</sub>), 1.8 - 2.6 (m, 4H, Cyclobutyl-H), 3.52, 3.77 (AB + q, 2H, CH<sub>2</sub>), 4.55 (m, 1H, CH). – MS: m/z = 137 (M<sup>+</sup> – H), 123 (– CH<sub>3</sub>), 109 (– CH<sub>2</sub>CH<sub>3</sub>).

C<sub>9</sub>H<sub>14</sub>O (138.7) Ber. C 78.21 H 10.21 Gef. C 78.07 H 10.15

Spaltungsreaktionen des Methylethers 23: Mit Chlortrimethylsilan/Natriumiodid<sup>28)</sup> und Iodtrimethylsilan/Pyridin<sup>29)</sup> trat keine Spaltung ein.

*Mit Iodtrimethylsilan*<sup>30</sup>: In einem trockenen Kölbchen wird der Ether **23** (93 mg, 0.75 mmol) in absol. Chloroform (0.2 ml) gelöst. Dann wird bei 0°C unter Stickstoff Iodtrimethylsilan (180 µl, 1.2 mmol) durch ein Septum zugespritzt. Dabei färbt sich die zuvor farblose Lösung sofort rotbraun. Das Gaschromatogramm einer sofort entnommenen Probe bestätigt, daß der Ether **23** spontan reagiert hat. Zur Aufarbeitung werden flüchtige Bestandteile im Wasserstrahlvak. abgesaugt. Der Rückstand wird bei Raumtemp. und 1.33 Pa umkondensiert, 1-(1-Iodcyclopropyl)-1-cyclobuten (26), Reinheit 90% (GC). – IR (Film): 3050 (Cyclopropyl-C-H), 1630 cm<sup>-1</sup> (C=C). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.1 - 1.4$  (AA'BB', 4H, Cyclopropyl-H), 2.1 – 2.3 (m, 4H, Cyclobuten-H), 5.71 (t, 1H, CH). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = -0.8$  (s, CI), 17.8 (t, Cyclopropyl-CH<sub>2</sub>), 23.1 und 28.1 (t, Cyclobuten-CH<sub>2</sub>), 129.5 (d, CH), 151.9 (s, quartäres vinylisches C). – MS: m/z = 220 (M<sup>+</sup>), 127 (I<sup>+</sup>), 93 (– I), 91 (C<sub>7</sub>H<sup>+</sup>).

#### Spaltung der Ether 23 und 10d mit n-Butyllithium<sup>33)</sup>

1-Butyl-2-cyclopropylidencyclobutan (27): Zu einer Lösung von 23 bzw. 10d (1.2 mmol) in absol. Pentan (3 ml) wird bei Raumtemp. unter Stickstoff 1.6 M n-Butyllithium-Lösung in Hexan (2.5 ml, 4 mmol) getropft. Nach 1 h Rühren bei Raumtemp. wird wäßrig aufgearbeitet. Es wird sowohl bei 23 als auch bei 10d der Kohlenwasserstoff 27 erhalten, auch bei -78 und 0°C, Reinheit 70% (GC). – IR (Film): 3000 (C-H, sehr intensiv), 1640 cm<sup>-1</sup> (C=C). – <sup>1</sup>H-NMR (CCl<sub>4</sub>):  $\delta = 0.9$  (m, Cyclopropyl-H), 1.3 (m, Butyl-H), 1.1–2.5 (m, Cyclobutyl-H). – MS: m/z = 150 (M<sup>+</sup>), 135 (– CH<sub>3</sub>), 121 (– C<sub>2</sub>H<sub>5</sub>), 107 (– C<sub>3</sub>H<sub>7</sub>), 93 (– C<sub>4</sub>H<sub>9</sub>).

Wittig-Reaktion mit 2-(Tetrahydro-2-pyranyloxy)cyclobutanon (28) zu 2-Cyclopropylidencyclobutyl)-(tetrahydro-2-pyranyl)-ether (29): Ausgehend von Natriumhydrid (20.2 g, 840 mmol) und (3-Brompropyl)triphenylphosphoniumbromid<sup>25)</sup> (195.2 g, 420 mmol) wird, wie bei 23 beschrieben (s. o.), das Ylid dargestellt. Zu diesem wird bei 70°C das Keton 28<sup>27</sup>) in DME zugetropft, und weitere 5 h wird bei dieser Temp. gerührt. Nach Absetzen des Niederschlags wird dekantiert, die Lösung mit Eiswasser hydrolysiert und mit Petrolether (30-50°C) extrahiert. Der Niederschlag wird mit Petrolether (30-50°C) gewaschen, und die vereinigten Extrakte werden mit gesättigter Natriumchloridlösung und Wasser gewaschen, über Magnesiumsulfat getrocknet und im Rotationsverdampfer eingeengt. Der Rückstand wird i. Vak. fraktioniert, Reinheit 95% (GC), Sdp. 44-45°C/5.32 Pa, Ausb. 22.6 g (57%). – IR (Film): 3060 (Cyclopropyl-C–H), 1140 cm<sup>-1</sup> (HC–O–CH). – <sup>1</sup>H-NMR  $(CDCl_3): \delta = 0.94 - 1.26$  (m, 4H, Cyclopropyl-H), 1.46 - 1.65 (m, 4H, CH<sub>2</sub>CH<sub>2</sub> in THP, 1.67-1.78 und 1.79-1.88 (m, 2H, CH<sub>2</sub>CH), 1.93-2.13, 2.25-2.45 und 2.52-2.63 (m, 1, 2 und 1 H, Cyclobutyl-H), 3.46-3.52 und 3.85-3.98 (m, 2H, CH<sub>2</sub>O), 4.72 und 4.88 (2 t, 1 H; J = 3.5 Hz, THP-CH).  $- {}^{13}$ C-NMR (CDCl<sub>3</sub>)<sup>32</sup>:  $\delta = 0.3$  und 1.0 sowie 1.6 und 1.7 (t, Cyclopropyl-CH<sub>2</sub>), 18.4 und 18.7 (t, C-4 in THP), 23.3-23.7 (t, Cyclobutyl-CH<sub>2</sub>), 24.9 (t, CH<sub>2</sub>CH<sub>2</sub>O), 26.4 und 26.8 (t, Cyclobutyl-CH<sub>2</sub>), 29.9 und 30.0 (t, CH<sub>2</sub>CH in THP), 60.6 und 61.6 (t, CH<sub>2</sub>O), 73.2 und 74.1 (d, Cyclobutyl-CH), 94.4 und 97.0 (d, THP-CH), 111.5 und 112.2 (s, vinyl. Cyclopropyl-C), 129.2 und 130.5 (s, vinyl. Cyclobutyl-C). -MS: m/z = 194(M<sup>+</sup>), 193 (- H), 85 (THP-Kation).

C12H18O2 (194.3) Ber. C 74.19 H 9.34 Gef. C 73.88 H 9.58

2-Cyclopropylidencyclobutanol (10a): Zu einer Lösung von 29 (22.6 g, 116 mmol) in Methanol (115 ml) werden unter Rühren 20proz. Schwefelsäure (22 ml) analog Lit.<sup>27)</sup> getropft. Nach 20 min Rühren bei Raumtemp. wird mit 10proz. Na<sub>2</sub>CO<sub>3</sub>-Lösung neutralisiert, mit Dichlormethan extrahiert, der Extrakt mit Wasser gewaschen und über Magnesiumsulfat getrocknet. Nach Entfernen des Lösungsmittels i. Vak. wird destilliert. Sdp. 71 – 78 °C/

1596 Pa, Ausb. 10.1 g (76%), Reinheit 90% (GC). Für die Spektren und Analysen wurden 600 mg der Hauptfraktion mit Dichlormethan auf Kieselgel chromatographiert, Reinheit 99% (GC). – IR (Film): 3380 (OH), 3060 cm<sup>-1</sup> (Cyclopropyl C–H). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.92 - 0.99$  (m, 2H, Cyclopropyl-CH<sub>2</sub>, trans-ständig), 1.00 – 1.08 und 1.15 – 1.22 (m, 2H, Cyclopropyl-CH<sub>2</sub>, cis), 2.28 (s, 1 H, OH), 1.82 – 1.95, 2.30 – 2.42 und 2.43 – 2.58 (m, 1, 2 und 1H, Cyclobutyl-H), 4.79 (m, 1 H, CH). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 0.3$  und 1.6 (t, Cyclopropyl-CH<sub>2</sub>), 23.6 und 30.2 (t, Cyclopropyl-CH<sub>2</sub>), 71.9 (d, CH), 111.6 (s, vinyl. Cyclopropyl-C), 137.2 (s, vinyl. Cyclobutyl-C). – MS: m/z = 110 (M<sup>+</sup>), 109 (– H), 91 (C<sub>7</sub>H<sub>7</sub><sup>+</sup>).

C<sub>7</sub>H<sub>10</sub>O (110.2) Ber. C 77.33 H 9.15 Gef. C 77.25 H 9.13

Die 3,5-Dinitrobenzoate 8f, 9f und 10f werden nach Lit.<sup>16)</sup> dargestellt:

2-Cyclopropyliden-1-methylpropyl-(3,5-dinitrobenzoat) (8f): Ausb. 91%, Schmp. 75 bis 76°C. – IR (KBr): 1730 (C=O), 1645 (aromat. C=C), 1575 cm<sup>-1</sup> (NO<sub>2</sub>). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.08$  (m, 4H, Cyclopropyl-H), 1.55 (d, 3H, CH<sub>3</sub>CHO), 1.90 (quint, 3H, CH<sub>3</sub>C=C; J = 1.6 Hz), 5.84 (q, 1H, CHO), 9.11 und 9.17 (AB<sub>2</sub>, 3H, aromat.; J = 2.23 Hz). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 1.1$ , 3.4 (2 t, Cyclopropyl-C), 16.5, 18.7 (2 q, CH<sub>3</sub>), 77.0 (d, CHO), 121.2 (s, vinyl. Cyclopropyl-C), 122.1 (d, Benzoat-C-4), 122.7 (s, Exomethylen-C), 129.3 (d, Benzoat-C-2), 134.7 (s, C-C=O), 148.7 (s, CNO<sub>2</sub>), 161.7 (s, C=O).

C14H14N2O6 (306.3) Ber. C 54.90 H 4.58 N 9.15 Gef. C 55.00 H 4.58 N 9.09

2-Cyclopropylidenpropyl-(3,5-dinitrobenzoat) (9f): Ausb. 82%, Schmp. 118°C. – IR (KBr): 1730 (C=O), 1645 (aromat. C=C), 1575 cm<sup>-1</sup> (NO<sub>2</sub>). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.12 (m, 4H, Cyclopropyl-H), 1.94 (quint, 3H, CH<sub>3</sub>; J = 1.6 Hz), 5.02 (s, 2H, CH<sub>2</sub>O), 9.15, 9.19 (AB<sub>2</sub>, 3 aromat. H; J = 2.21 Hz). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.8, 2.7 (2 t, Cyclopropyl-C), 18.0 (q, CH<sub>3</sub>), 70.1 (t, CH<sub>2</sub>O), 118.4 (s, vinyl. Cyclopropyl-C), 123.3 (s, Exomethylen-C), 122.2, 129.3, 134.1, 148.7 (aromat. C, Zuordnung und Multiplizität wie 8f), 163.4 (s, C=O).

C13H12N2O6 (292.2) Ber. C 53.42 H 4.11 N 9.59 Gef. C 53.30 H 3.98 N 9.51

2-Cyclopropylidencyclobutyl-(3,5-dinitrobenzoat) (10f): Ausb. 93%, Schmp. 134°C. – IR (KBr): 3080 (Cyclopropyl-C – H), 1740 (C = O), 1630 (aromat. C=C), 1560 cm<sup>-1</sup> (NO<sub>2</sub>). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.10 (m, 4H, Cyclopropyl-H), 2.24–2.86 (m, 4H, Cyclobutyl-H), 5.97 (m, 1H, CHO), 9.15, 9.20 (AB<sub>2</sub>, 3 aromat. H; J = 2.15 Hz). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.7, 2.4 (2 t, Cyclopropyl-C), 25.1, 26.8 (t, Cyclobutyl-C), 74.8 (d, CHO), 116.8 (s, vinyl. Cyclopropyl-C), 126.4 (s, vinyl. Cyclobutyl-C), 122.2, 129.3, 134.1, 148.7 (aromat. C, Zuordnung und Multiplizität wie **8f**), 161.9 (s, C=O).

C14H12N2O6 (304.3) Ber. C 55.27 H 3.98 N 9.21 Gef. C 55.13 H 3.87 N 9.12

2-Cyclopropylidencyclobutyl-(4-methylbenzolsulfonat) (10b) wird aus dem Alkohol 10a nach Lit.<sup>14)</sup> dargestellt. Ausb. 61%, Schmp. 65–66°C. – IR (KBr): 1605 (aromat. C=C), 1370, 1180 cm<sup>-1</sup> (SO<sub>2</sub>). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.92-1.00$  (m, 2H, Cyclopropyl-CH<sub>2</sub>, trans-ständig), 0.83–0.91 und 1.02–1.11 (m, 2H, Cyclopropyl-CH<sub>2</sub>, cis), 2.11–2.22 und 2.25–2.35 (m, 2H, Cyclobutyl-3-H), 2.42 (s, 3H, CH<sub>3</sub>), 2.36–2.48 und 2.56–2.67 (m, 2H, CH<sub>2</sub>CHO–), 5.38 (m, 1H, CHO), 7.31 (d, 2H, Benzol-3-H), 7.78 (d, 2H, Benzol-2-H). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 1.3$ , 2.3 (2 t, Cyclopropyl-C), 21.4 (q, CH<sub>3</sub>), 24.6 (t, Butyl-C-3), 27.6 (t, Butyl-C-4), 78.0 (d, CHO), 117.9 (s, vinyl. Cyclopropyl-C), 125.3 (s, vinyl. Cyclobutyl-C), 127.6 (d, Benzol-C-2), 129.6 (d, Benzol-C-3), 134.2 (s, CSO<sub>2</sub>), 144.4 (s, Benzol-C-4).

C14H16O3S (264.5) Ber. C 63.58 H 6.15 S 12.12 Gef. C 63.65 H 6.31 S 12.39

1-(1-Methyl-1-propenyl)cyclopropyl-(4-methylbenzolsulfonat) (18b): Ausb. 30%, Schmp. Zers. – IR (KBr): 3040 (Cyclopropyl-C–H), 1670 (C=C), 1590, 1490 (aromat. C=C), 1360, 1175 cm<sup>-1</sup> (SO<sub>2</sub>). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.7-1.3$  (AA'BB', 4H, Cyclopropyl-H), 1.39

(s, 3H, CH<sub>3</sub>C=), 1.41 (dq, 3H, CHCH<sub>3</sub>), 2.40 (s, 3H, CH<sub>3</sub> in Tosylat), 5.73 (qq, 1H, CH), 7.2-7.8 (AA'BB', 4 aromat. H). - <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 11.7$  (t, Cyclopropyl-C), 12.8, 13.2 (q, CH<sub>3</sub>), 21.4 (q, CH<sub>3</sub>), 70.7 (s, C-O), 125.2 (d, vinyl. CH), 131.3 (s, quart. vinyl. C), 128.1, 129.1, 135.2, 144.1 (Zuordnung und Multiplizität wie **10b**).

C14H18O3S (266.4) Ber. C 63.15 H 6.77 S 12.03 Gef. C 63.01 H 6.63 S 11.88

2-Cyclopropylidencyclobutyl-[4-(dimethylamino)benzolsulfonat] (10g): Darstellung analog Lit.<sup>37)</sup>, Ausb. 53%, Schmp. 89°C. – IR (KBr): 1620 (aromat. C=C), 1370, 1180 cm<sup>-1</sup> (S=O). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 0.93–1.10 (m, 4H, Cyclopropyl-H), 2.12–2.87 (m, 4H, Cyclobutyl-H), 3.04 (s, 6H, 2CH<sub>3</sub>), 5.30 (m, 1H, CHO), 6.60 (d, 2H, Benzol-3-H), 7.75 (d, 2H, Benzol-2-H). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.7, 2.3 (t, Cyclopropyl-C), 24.5, 27.6 (t, Cyclobutyl-C), 39.7 (q, 2CH<sub>3</sub>), 77.1 (d, CHO), 110.6 (d, Benzol-C-3), 117.2 (s, vinyl. Cyclopropyl-C), 121.7 (s, CSO<sub>2</sub>), 125.6 (s, vinyl. Cyclobutyl-C), 129.3 (d, Benzol-C-2), 153.2 (s, C–N). – MS: m/z = 293 (M<sup>+</sup>), 200 [(CH<sub>3</sub>)<sub>2</sub>NArSO<sub>3</sub><sup>+</sup>], 184 [(CH<sub>3</sub>)<sub>2</sub>NArSO<sub>2</sub><sup>+</sup>], 168 [(CH<sub>3</sub>)<sub>2</sub>NArSO<sup>+</sup>], 136 [(CH<sub>3</sub>)<sub>2</sub>NArO<sup>+</sup>], 120 [(CH<sub>3</sub>)<sub>2</sub>NAr<sup>+</sup>], 91 (C<sub>7</sub>H<sub>7</sub><sup>+</sup>).

 $\begin{array}{cccc} C_{15}H_{19}NO_{3}S \ (293.4) & Ber. \ C \ 61.40 & H \ 6.53 & N \ 4.77 & S \ 10.93 \\ & Gef. \ C \ 61.81 & H \ 6.77 & N \ 4.72 & S \ 10.85 \end{array}$ 

#### Solvolysen

Durchführung der Solvolysen: Die Substrate werden in mit Septen verschlossenen Gläschen vorgelegt und das Lösungsmittel mit Triethylamin als Puffer und Brombenzol als internem Standard durch eine Spritze zugegeben. Dann wird magnetisch bei bestimmter Temperatur gerührt, bis die Intensität der Produktpeaks im Vergleich zum Standardpeak im Gaschromatogramm nicht mehr zunimmt. Die quantitative Zusammensetzung der Solvolyseprodukte wird direkt aus dem Solvolysegemisch durch Integration der Peakflächen im Gaschromatogramm ermittelt (Glaskapillarsäule, 23.5 m; Carbowax 20 M, Temp.-Programm 70-180°C). Der qualitative Nachweis der Solvolyseprodukte erfolgt entweder durch Nachspritzen mit authentischen Proben auf Kapillarsäulen oder Isolierung der Produkte mittels PGC. Aus GC/MS-Kopplung werden zusätzlich die Molekülmassen sämtlicher Solvolyseprodukte erhalten. Von diesen Angaben abweichende Durchführung von Solvolysen wird im einzelnen beschrieben.

Solvolysen des Tosylats 18b in 2,2,2-Trifluorethanol (TFE), 80proz. wäßrigem TFE und 50proz. wäßrigem Ethanol: 20 mg (0.076 mmol) 18b, 3 mg Brombenzol und 8.3 mg (0.082 mmol) Triethylamin werden in 0.5 ml Lösungsmittel 2 h bei Raumtemp. gerührt. Diese Lösungen werden direkt für die gaschromatographischen Ermittlungen der quantitativen Produktzusammensetzung verwendet.

Isolierung der Solvolyseprodukte von 18b in 50proz. wäßrigem Ethanol: 1.9 g 18b werden wie beschrieben solvolysiert, dann wird mit 50 ml Wasser versetzt, mit Ether extrahiert und die Etherphase mehrmals mit Wasser gewaschen. Aus der getrockneten und eingeengten etherischen Lösung können durch PGC (Stahlsäule, 2.5 m, 4 mm Innendurchmesser; 10% Carbowax 20 M) die Produkte 18a, 30a, b und 31 rein erhalten werden. Die isomeren Ether 8d und 18d werden gemeinsam aufgefangen und durch nochmalige PGC (Stahlsäule, 3 m, 4 mm Innendurchmesser; 5% Carbowax 20 M + 2% KOH) getrennt.

#### Spektroskopische Daten der isolierten Solvolyseprodukte

(2-Cyclopropyliden-1-methylpropyl)-ethyl-ether (8d): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.01$  (m, 4H, Cyclopropyl-H), 1.15 (t, 3H, CH<sub>3</sub>CH<sub>2</sub>), 1.24 (d, 3H, CH<sub>3</sub>CH), 1.74 (qm, 3H, allyl. CH<sub>3</sub>, J = 1.6 Hz), 3.31 (ABq, 2H, CH<sub>2</sub>), 4.11 (q, 1H, CHO). - MS: m/z = 140 (M<sup>+</sup>), 125 (- CH<sub>3</sub>), 111 (- C<sub>2</sub>H<sub>3</sub>), 79 (- CH<sub>3</sub>, - C<sub>2</sub>H<sub>5</sub>OH).

*1-(1-Methyl-1-propenyl) cyclopropanol* (**18a**): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.77$  (AA'BB', 4H, Cyclopropyl-H), 1.61 (d, 3H, CH<sub>3</sub>CH), 1.64 (s, 3H, CH<sub>3</sub>C=), 1.77 (s, 1H, OH), 5.61 (q, 1H, CH). - MS: m/z = 112 (M<sup>+</sup>), 79 (- CH<sub>3</sub>, - H<sub>2</sub>O).

*Ethyl-[1-(1-methyl-1-propenyl]cyclopropyl]-ether* (18d): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.71$  (AA'BB', 4H, Cyclopropyl-H), 1.10 (t, 3H, CH<sub>3</sub>CH<sub>2</sub>), 1.60 (dq, 3H, CH<sub>3</sub>CH, J = 1.0 Hz), 1.70 (q, 3H,  $= C - CH_3$ , J = 1.0 Hz), 3.33 (q, 2H, CH<sub>2</sub>), 5.44 (qq, 1H, CH, J = 1.3 Hz für Allylkopplung). – MS: m/z = 140 (M<sup>+</sup>), 125 (– CH<sub>3</sub>), 111 (– C<sub>2</sub>H<sub>5</sub>).

3-Methyl-2-methylen-3-penten-1-ol (30a): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.57$  (s, 1H, OH), 1.73 (d, 3H, CHCH<sub>3</sub>), 1.78 (s, 3H, 3-CH<sub>3</sub>), 4.32 (s, 2H, CH<sub>2</sub>O), 5.10 (s, 2H, H<sub>2</sub>C=), 5.68 (q, 1H, CH). - <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 13.8$ , 14.0 (2CH<sub>3</sub>), 64.5 (CH<sub>2</sub>O), 110.7, 122.3 (vinyl. CH<sub>2</sub> und CH), 133.3, 148.5 (quart. vinyl. C).

Ethyl-(3-methyl-2-methylen-3-pentenyl)-ether (**30b**): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.20$  (t, 3H, CH<sub>2</sub>CH<sub>3</sub>), 1.73 (d, 3H, CHCH<sub>3</sub>), 1.77 (s, 3H, H<sub>3</sub>CC=), 3.48 (q, 2H, CH<sub>2</sub>CH<sub>3</sub>), 4.14 (s, 2H, CH<sub>2</sub>O), 5.11 (s, 2H, =CH<sub>2</sub>), 5.74 (q, 1H, CH). - MS: m/z = 140 (M<sup>+</sup>), 125 (- CH<sub>3</sub>), 111 (- C<sub>2</sub>H<sub>3</sub>).

4-Methyl-4-hexen-3-on (31): IR (CDCl<sub>3</sub>): 1680 (C=O), 1620 cm<sup>-1</sup> (C=C).  $^{-1}$ H-NMR (CDCl<sub>3</sub>):  $\delta = 1.08$  (t, 3H, CH<sub>3</sub>-1), 1.78 (s, 3H, 4-CH<sub>3</sub>), 1.82 (d, 3H, CH<sub>3</sub>-6), 2.65 (q, 2H, 2-H), 6.70 (q, 1H, CH). - MS: m/z = 112 (M<sup>+</sup>), 83 (- C<sub>2</sub>H<sub>5</sub>), 55 (- C<sub>2</sub>H<sub>5</sub>, - CO).

Isolierung der Solvolyseprodukte von 18b in TFE: 18b (500 mg) wird in TFE (11 ml) sowie in 50proz. EtOH/H<sub>2</sub>O solvolysiert. Nach wäßriger Aufarbeitung wird restliches TFE an einer kurzen Kieselgelsäule mit Petrolether (30-50 °C)/Ether (9:1) chromatographisch abgetrennt. Aus der eingeengten Lösung können durch präparative Gaschromatographie (Stahlsäule 3 m, 4 mm Innendurchmesser; 5% Carbowax 20 M + 2% KOH) die Trifluorethylether 8e, 18e und 30c isoliert werden.

#### Spektroskopische Daten der isolierten Solvolyseprodukte

(2-Cyclopropyliden-1-methylpropyl)-(2,2,2-trifluorethyl)-ether (8e): <sup>1</sup>H-NMR (CDCl<sub>3</sub>): $<math>\delta = 1.01$  (m, 4H, Cyclopropyl-H), 1.31 (d, 3H, CHCH<sub>3</sub>), 1.73 (s, 3H, allyl. CH<sub>3</sub>), 3.62 (q, AB, 2H, CH<sub>2</sub>), 4.30 (q, 1H, CH). - MS: m/z = 194 (M<sup>+</sup>), 95 (- OCH<sub>2</sub>CF<sub>3</sub>), 79 (- OCH<sub>2</sub>CF<sub>3</sub>, - CH<sub>3</sub>).

[1-(1-Methyl-1-propenyl)cyclopropyl]-(2,2,2-trifluorethyl)-ether (18e): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.80$  (AA'BB', 4H, Cyclopropyl-H), 1.61 (dq, 3H, CHCH<sub>3</sub>), 1.71 (sq, 3H, H<sub>3</sub>CC=), 3.65 (q, 2H, CH<sub>2</sub>), 5.53 (qq, 1H, CH). – MS: wie 8e.

(3-Methyl-2-methylen-3-pentenyl)-(2,2,2-trifluorethyl)-ether (30 c): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.73$  (d, 3H, CHCH<sub>3</sub>), 1.77 (s, 3H, H<sub>3</sub>CC=), 3.76 (q, 2H, CH<sub>2</sub>CF<sub>3</sub>), 4.31 (s, 2H, CH<sub>2</sub>O), 5.09 und 5.19 (s, je 1 H, H<sub>2</sub>C=), 5.80 (q, 1 H, CH). - MS: m/z = 194 (M<sup>+</sup>), 179 (- CH<sub>3</sub>), 139 (- CH<sub>2</sub>C=CHCH<sub>3</sub>).

Solvolysen des Dinitrobenzoats 8f in TFE, 80proz. wäßrigem TFE und 50proz. wäßrigem EtOH: 8f (25 ml, 0.082 mmol), Triethylamin (9.1 mg, 0.09 mmol) und der GC-Standard Brombenzol (3 mg) werden in 1 ml Lösungsmittel 20 h bei 50°C gerührt. Die Ermittlung der Produktverteilung geschieht wie bei den Solvolysen von 18b, wobei alle Produkte durch Vergleich der Retentionszeit mit den bei 18b isolierten Substanzen identifiziert werden können.

Solvolysen des Dinitrobenzoats 9f in TFE, 80proz. wäßrigem TFE und 50proz. EtOH: 9f (25 mg) wird wie 8f solvolysiert und die Solvolyseprodukte 9a und 33b durch Vergleich der Retentionszeit mit authentischen Proben charakterisiert.

Solvolysen des Dinitrobenzoats 10f in TFE, 80proz. wäßrigem TFE und 50proz. wäßrigem EtOH: 10f (25 mg, 0.092 mmol), Brombenzol (5 mg) und Triethylamin (10.2 mg, 0.1 mmol) werden in 1 ml Lösungsmittel wie bei 8f beschrieben solvolysiert. In allen drei Solvolysen wird 10a als überwiegendes Solvolyseprodukt durch Zumischen von authent. 10a nachgewiesen.

Solvolyse des Dinitrobenzoats 10f in 80proz. wäßrigem Hexafluorisopropylalkohol (HFIP): 10f (25 mg), Brombenzol (5 mg) und Triethylamin (10.2 mg) werden unter Erwärmen auf 50°C in 1 ml 80% HFIP/H<sub>2</sub>O gelöst und 20 min bei dieser Temp. gerührt. Dann wird eine Probe der Solvolyselösung hydrolysiert und ausgeethert. Das Kapillar-Gaschromatogramm der etherischen Lösung zeigt ausschließliche Peaks mit sehr langen Retentionszeiten, die nicht von primären Solvolyseprodukten stammen können.

Solvolysen des Tosylats 10b in TFE, 80proz. wäßrigem TFE und 50proz. wäßrigem EtOH: 10b (25 mg, 0.095 mmol), Brombenzol (5 mg) und Triethylamin (10.5 mg, 0.1 mmol) werden in 0.5 ml Lösungsmittel bei Raumtemp. solvolysiert. Die Reaktionsdauer beträgt bei den TFE-Solvolysen 1 h und bei der EtOH-Solvolyse 2 h. Die Lösungen werden ohne Aufarbeitung für die gaschromatographischen Untersuchungen verwendet.

Isolierung der Solvolyseprodukte von 10b in 50proz. wäßrigem EtOH: 10b (200 mg) wird wie beschrieben solvolysiert. Es wird mit wäßriger Natriumchloridlösung versetzt, mit Ether extrahiert und die Etherphase mehrmals mit gesättigter Natriumchloridlösung und mit Wasser gewaschen. Ein Kapillargaschromatogramm der getrockneten und eingeengten etherischen Lösung zeigt, daß die Produktzusammensetzung durch die Aufarbeitung nicht verändert wird. Aus dieser Lösung wird durch PGC (Stahlsäule, 2.5 m, 4 mm Innendurchmesser; 10% Carbowax 20 M auf Chromosorb PAW) nur der Ether 34b rein erhalten. Ein anderer Teil der etherischen Lösung wird auf einer ebenfalls stark polaren Säule gaschromatographiert (Stahlsäule 2.5 m, 4 mm Innendurchmesser; 10% EGS auf Chromosorb PAW), wodurch die Ether 10b und 35b in Reinsubstanz gewonnen werden. Die Alkohole 10a, 34a und 35a können mit den verwendeten Säulen nicht getrennt werden. Deshalb wird 10b (300 mg) in 40proz. wäßrigem EtOH wie beschrieben solvolysiert und aufgearbeitet. Die Verwendung einer ebenfalls polaren, aber besser desaktivierten und schwächer belegten GC-Säule (Stahlsäule, 2.5 m, 4 mm Innendurchmesser; 8% Carbowax 20 M auf Chromosorb PAW-DMCS) ermöglicht auch die Isolierung der Alkohole. Eine in mehreren Solvolysen auftretende Substanz lagert beim Versuch einer Isolierung auf dieser Säule um.

#### Spektroskopische Daten der isolierten Solvolyseprodukte

2-Cyclopropylidencyclobutyl-ethyl-ether (10d): <sup>1</sup>H-NMR- und Massenspektren entsprechen denen der synthetisierten authentischen Probe.

1-(1-Cyclobuten-1-yl)cyclopropanol (34a): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.70-1.08$  (AA'BB', 4H, Cyclopropyl-H), 1.70 (s, 1.5H, OH + H<sub>2</sub>O), 2.30 (s, 4H, Cyclobutenyl-H), 5.86 (s, 1H, CH). - MS: m/z = 110 (M<sup>+</sup>), 109 (- H), 95 (- CH<sub>3</sub>), 91 (C<sub>7</sub>H<sub>7</sub><sup>+</sup>).

[1-(1-Cyclobuten-1-yl)cyclopropyl]-ethyl-ether (34b): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.63 - 1.00$  (AA'BB', 4H, Cyclopropyl-H), 1.14 (t, 3H, CH<sub>3</sub>), 2.32 (s, 4H, Cyclobutenyl-H), 3.56 (q, 2H, OCH<sub>2</sub>), 5.79 (s, 1H, CH). - MS: m/z = 138 (M<sup>+</sup>), 137 (- H), 123 (- CH<sub>3</sub>), 110 (- C<sub>2</sub>H<sub>4</sub>), 109 (- C<sub>2</sub>H<sub>5</sub>).

2-(1-Cyclobuten-1-yl)-2-propen-1-ol (35a): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.59$  (s, 1.5H, OH + H<sub>2</sub>O), 2.37-2.50 und 2.57-2.68 (m, 4H, Cyclobutenyl-H), 4.29 (s, 2H, CH<sub>2</sub>O), 5.10 (AB, 2H, =CH<sub>2</sub>), 5.99 (s, 1H, CH). - MS: wie **34a**.

[2-(1-Cyclobuten-1-yl)-2-propenyl]-ethyl-ether (**35b**): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.20$  (t, 3H, CH<sub>3</sub>), 2.36-2.50 und 2.55-2.67 (m, 4H, Cyclobutenyl-H), 3.49 (q, 2H, CH<sub>2</sub>CH<sub>3</sub>), 4.07 (s, 2H, CH<sub>2</sub>O), 5.05 (s, 2H, =CH<sub>2</sub>), 5.95 (s, 1H, CH). - MS: m/z = 138 (M<sup>+</sup>), 110 (- C<sub>2</sub>H<sub>4</sub>), 109 (- C<sub>2</sub>H<sub>5</sub>).

Isolierung der Solvolyseprodukte von 10b in TFE: 10b (100 mg) werden wie beschrieben in TFE (2 ml) solvolysiert und wie bei der Solvolyse von 18b in TFE aufgearbeitet. Aus der eingeengten etherischen Lösung können die Trifluorethylether 10e, 34c und 35c durch präparative GC (Stahlsäule, 3 m, 4 mm Innendurchmesser, 5% Carbowax 20 M + 2% NaOH) rein erhalten werden.

#### Spektroskopische Daten der isolierten Solvolyseprodukte

(2-Cyclopropylidencyclobutyl)-(2,2,2-trifluorethyl)-ether (10e): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.09 \text{ (m, 4 H, Cyclopropyl-H)}, 1.93-2.70 \text{ (m, 4 H, Cyclobutyl-H)}, 3.86 \text{ und 3.97 (q, AB, 2 H, OCH<sub>2</sub>, <sup>2</sup>J<sub>H,H</sub> = 12.0, <sup>3</sup>J<sub>H,F</sub> = 8.8 Hz), 4.70 (m, 1 H, CH). - MS: <math>m/z = 192 \text{ (M}^+), 177 \text{ (-CH<sub>3</sub>)}, 109 \text{ (- CH<sub>2</sub>CF<sub>3</sub>)}, 91 (C<sub>7</sub>H<sub>7</sub><sup>+</sup>).$ 

[1-(1-Cyclobuten-1-yl)cyclopropyl]-(2,2,2-trifluorethyl)-ether (34c): <sup>1</sup>H-NMR (CDCl<sub>3</sub>): $<math>\delta = 0.96 - 1.23$  (AA'BB', 4H, Cyclopropyl-H), 2.34 (s, 4H, Cyclobutenyl-H), 3.89 (q, 2H, OCH<sub>2</sub>), 5.87 (s, 1H, CH). - MS: m/z = 193 (M<sup>+</sup>), 177 (- CH<sub>3</sub>), 123 (- CF<sub>3</sub>), 109 (- CH<sub>2</sub>CF<sub>3</sub>), 91 (C<sub>7</sub>H<sub>7</sub><sup>+</sup>).

 $[2-(1-Cyclobuten-1-yl)-2-propenyl]-(2,2,2-trifluorethyl)-ether (35c): ^1H-NMR (CDCl_3):$  $\delta = 2.36-2.50 und 2.55-2.67 (m, 4H, Cyclobutenyl-H), 3.79 (q, 2H, CH<sub>2</sub>CF<sub>3</sub>), 4.24 (s, 2H, CH<sub>2</sub>O), 5.11 (s, 2H, =CH<sub>2</sub>), 5.99 (s, 1H, CH). - MS: <math>m/z = 192$  (M<sup>+</sup>), 177 (- CH<sub>3</sub>), 139 (- Cyclobutenylradikal), 113 (CF<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub><sup>+</sup>), 109 (- CH<sub>2</sub>CF<sub>3</sub>), 91 (C<sub>7</sub>H<sub>7</sub><sup>+</sup>).

Solvolyse von 10b in 80proz. wäßrigem HFIP: Eine Lösung von Triethylamin (10.5 mg, 0.10 mmol) und Brombenzol (5 mg) in 80% HFIP/H<sub>2</sub>O (0.5 ml) wird auf 0°C gekühlt und zu pulverisiertem 10b (25 mg, 0.095 mmol), ebenfalls im Eisbad, gegeben. Nach 40 min bei 0°C wird wäßrig aufgearbeitet und mit Ether extrahiert. Die mit Wasser gewaschene, über Magnesiumsulfat getrocknete und eingeengte etherische Lösung wird gaschromatographisch untersucht. Die drei isomeren Alkohole 10a, 34a und 35a werden durch Zumischen authentischer Proben identifiziert.

Isolierung eines Solvolyseproduktes von 10b in 80proz. wäßrigem HFIP: 10b (200 mg) wird ohne Brombenzol wie beschrieben solvolysiert, dann wird analog aufgearbeitet. Restliches HFIP läßt sich nicht wie TFE mit Pentan/Ether (9:1) auf Kieselgel chromatographisch entfernen. Trotzdem kann der HFIP-Ether 35d durch PGC (Stahlsäule 3.5 m; 4 mm Innendurchmesser; 10% Carbowax 20 M) rein erhalten werden. Zumischen von Dicyclopropylketon (37) schließt dessen Auftreten aus.

[2-(1-Cyclobuten-1-yl)-2-propenyl]-(1,1,1,3,3,3-hexafluorisopropyl)-ether (35d): <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 2.37 - 2.50$  und 2.55 - 2.67 (m, 4H, Cyclobutenyl-H), 4.10 [sept, 1H, CH(CF<sub>3</sub>)<sub>2</sub>], 4.42 (s, 2H, CH<sub>2</sub>O), 5.18 (s, 2H, =CH<sub>2</sub>), 6.00 (s, 1H, CH). - MS: m/z = 260 (M<sup>+</sup>), 109 [- CH(CF<sub>3</sub>)<sub>2</sub>], 91 (C<sub>7</sub>H<sub>7</sub><sup>+</sup>).

Solvolyse von 10b in Trifluoressigsäure (TFA): Ein mit pulverisiertem 10b (25 mg, 0.095 mmol) gefülltes Septumgläschen wird mit Stickstoff gespült, verschlossen und auf  $-15^{\circ}$ C gekühlt. In einem anderen Gläschen werden Natriumtrifluoracetat (15.5 mg, 0.114 mmol) als Puffer und Brombenzol (5 mg) in TFA (0.5 ml) gelöst. Diese Lösung wird ebenfalls auf  $-15^{\circ}$ C gekühlt und mit einer Spritze in das erste Gläschen mit dem Tosylat übergeführt. Dabei färbt sich die Lösung spontan rot, weshalb bereits nach wenigen Sekunden eine Probe entnommen und mit Natriumhydrogencarbonat neutralisiert wird. In einer

hiervon erhaltenen etherischen Lösung wird neben einem nicht bekannten Peak nur Trifluoracetat (M<sup>+</sup> 206) nachgewiesen. Zur Identifizierung wird die Solvolyse wiederholt und gleich wäßrig aufgearbeitet. Nach Entfernen des Ethers wird der Rückstand mit 1proz. methanolischer Kalilauge (0.5 ml) in 20 min bei 40 °C verseift. Nun wird mit Wasser (3 ml) verdünnt, ausgeethert und in der etherischen Lösung der Alkohol 35a durch Zumischen nachgewiesen. Dicyclopropylketon (37) ließ sich nicht nachweisen.

Solvolyse des Damsylats 10g in 67proz. Schwefelsäure: In 2.5 ml der Schwefelsäure wird bei -40°C 10g (25 mg, 0.085 mmol) gegeben. Nach 10 min Rühren ist alles Damsylat gelöst. Die Abnahme des gelösten Damsylats wird dünnschichtchromatographisch (Kieselgel, Methylenchlorid) verfolgt. Außerdem werden in zeitlichen Abständen Proben entnommen, mit Methylenchlorid extrahiert und die Extrakte gaschromatographisch untersucht. Zur Aufklärung der Solvolyseprodukte wurden die authentischen isomeren Alkohole 10a, 34a und 35a sowie Dicyclopropylketon (37) zugemischt. Das Auftreten von 10a und 37 konnte ausgeschlossen werden. Die Solvolyse führte hauptsächlich zur Cyclopropylallyl-Umlagerung [34a (7%), 35a (33%)] und zur Bildung eines Dimerisierungsproduktes (44%), das wie weitere Produkte mit zusammen 16% nicht aufgeklärt wurde.

- <sup>1)</sup> R. H. De Wolfe und W. G. Young, in S. Patai (Ed.), Chemistry of Alkenes, S. 681, Interscience Publishers, London 1964; R. H. De Wolfe und W. G. Young, Chem. Rev. 56, 753 (1956).
- <sup>2)</sup> F. A. Carey und R. J. Sundberg, Advanced Organic Chemistry, Part A: Structure and Mechanisms, S. 163, Plenum Press, New York 1977; F. Badea, Reaction Mechanisms in Organic Chemistry, S. 116, Abacus Press, Kent 1977; G. S. Hammond, J. Am. Chem. Soc. 77, 334 (1955).
- <sup>3)</sup> P. B. D. De La Mare und C. A. Vernon, J. Chem. Soc. 1954, 2504; C. A. Vernon, ebenda 1954, 423; H. C. Brown, C. G. Rao und M. Ravindranathan, J. Org. Chem. 43, 4939 (1978); N. C. Deno in G. A. Olah und P. v. R. Schleyer (Ed.), Carbonium Ions, Vol. II, S. 783, Wiley, New York 1970.

- Wiley, New York 1970. <sup>4)</sup> A. T. Bottini und J. E. Christensen, Tetrahedron **30**, 393 (1974). <sup>5)</sup> C. H. De Puy, Acc. Chem. Res. 1, 33 (1968). <sup>6)</sup> D. E. Applequist und G. W. Nickel, J. Org. Chem. **44**, 321 (1979). <sup>7)</sup> J. D. Roberts und V. C. Chambers, J. Am. Chem. Soc. **73**, 5034 (1951). <sup>8)</sup> C. H. De Puy, L. G. Schnack, J. W. Hausser und W. Wiedemann, J. Am. Chem. Soc. **87**, 4006 (1965).
- <sup>9)</sup> J. A. Landgrebe und L. W. Becker, J. Am. Chem. Soc. 89, 2505 (1967); B. A. Howell und J. G. Jewett, ebenda 93, 798 (1971); J. J. Gajewski und J. P. Oberdier, ebenda 94, 6053 (1972); M. Bertrand, G. Leandri und A. Meon, Tetrahedron Lett. 1979, 1841.
- <sup>10)</sup> J. Salaün, J. Org. Chem. 41, 1237 (1976); 42, 28 (1977).
- <sup>(11)</sup> P. J. Stang, Z. Rappoport, M. Hanack und L. R. Subramanian, Vinyl Cations, Academic Press, New York 1979.
- <sup>12)</sup> F. Huet, A. Lechevallier und J. M. Conia, Tetrahedron Lett. 1977, 2521; F. Huet, A. Lechevallier, M. Pellet und J. M. Conia, Synthesis 1978, 63.
- <sup>13)</sup> F. Huet, M. Pellet und J. M. Conia, Tetrahedron Lett. 1976, 3579.
- <sup>14)</sup> R. S. Tipson, J. Org. Chem. 9, 235 (1944).
- <sup>15)</sup> K. Mackenzie in S. Patai (Ed.), Chemistry of Alkenes, S. 387, und zwar S. 441, Interscience Publishers, London 1964; C. E. Boozer und E. S. Lewis, J. Am. Chem. Soc. 75, 3182 (1953); F. F. Caserio, G. E. Dennis, R. H. De Wolfe und W. G. Young, ebenda 77, 4182 (1955); R. H. De Wolfe und W. G. Young in S. Patai (Ed.), Chemistry of Alkenes, S. 681, und zwar S. 710, Interscience Publishers, London 1964.
- <sup>16)</sup> M. Hanack, C. É. Harding und J. L. Derocque, Chem. Ber. 105, 421 (1972).
- <sup>17)</sup> H. Günther, Angew. Chem. 84, 907 (1972); Angew. Chem., Int. Ed. Engl. 11, 861 (1972).
- <sup>18)</sup> J. Kelder, J. A. J. Geenevasen und H. Cerfontain, Synth. Commun. 2, 125 (1972); E. H. Axelrod, G. M. Milne und E. E. van Tamelen, J. Am. Chem. Soc. 92, 2139 (1970).
- <sup>19)</sup> R. Machinek und W. Lüttke, Synthesis 1975, 255; G. A. Wiley, R. L. Hershkowitz, B. M. Rein und B. C. Chung, J. Am. Chem. Soc. 86, 964 (1964).

- <sup>20)</sup> E. J. Corey, C. U. Kim und M. Takeda, Tetrahedron Lett. 1972, 4339.
- <sup>21)</sup> G. A. Olah, B. G. B. Gupta, R. Malhotra und S. C. Narang, J. Org. Chem. 45, 1638 (1980). <sup>22)</sup> E. W. Collington und A. I. Meyers, J. Org. Chem. 36, 3044 (1971).
- <sup>23)</sup> J. J. Bloomfield und J. M. Nelke, Org. Synth. 57, 1 (1977).
- <sup>24)</sup> J. M. Denis, P. Le Perchec und J. M. Conia, Tetrahedron 33, 399 (1977).
- <sup>25)</sup> E. E. Schweizer, C. J. Berninger und J. G. Thompson, J. Org. Chem. 33, 336 (1968); K. Utimoto, M. Tamura und K. Šisido, Tetrahedron 29, 1169 (1973).
- <sup>26)</sup> K. Rühlmann, H. Seefluth und H. Becker, Chem. Ber. 100, 3820 (1967).
- <sup>27)</sup> J. P. Barnier, J. M. Denis, J. Salaün und J. M. Conia, Tetrahedron 30, 1405 (1974); X. Creary und A. J. Rollin, J. Org. Chem. 42, 4231 (1977); J. Salaün und J. M. Conia, J. Chem. Soc. D 1970, 1358; J. P. Barnier, B. Garnier, C. Girard, J. M. Denis, J. Salaün und J. M. Conia, Tetrahedron Lett. 1973, 1747.
- 28) T. Morita, Y. Okamoto und H. Sakurai, J. Chem. Soc., Chem. Commun. 1978, 874; G. A. Olah, S. C. Narang, B. G. B. Gupta und R. Malhotra, J. Org. Chem. 44, 1247 (1979).
- <sup>29)</sup> M. E. Jung und M. A. Lyster, Org. Synth. 59, 35 (1979).
- <sup>30)</sup> M. E. Jung und M. A. Lyster, J. Org. Chem. **42**, 3761 (1977). <sup>31)</sup> R. D. Youssefyeh und Y. Mazur, Tetrahedron Lett. **1962**, 1287; C. R. Narayanan und K. N. Iyer, ebenda 1964, 759.
- <sup>32)</sup> B. Ganem und V. R. Small jr., J. Org. Chem. 39, 7328 (1974).
- 33) K. Ziegler und H.-G. Gellert, Liebigs Ann. Chem. 567, 185 (1950); H. Gilman, A. H. Haubein und H. Harzfeld, J. Org. Chem. 19, 1034 (1954); X. Creary und A. J. Rollin, ebenda 44, 1019 (1979).
- 34) M. Hanack, W. Schumacher und E. Kunzmann, Chem. Ber. 115, 1467 (1982); K. Levsen und H. Schwarz, Angew. Chem. 88, 589 (1976); Angew. Chem., Int. Ed. Engl. 15, 509 (1976); J. M. Conia und J. L. Ripoll, Bull. Soc. Chim. Fr. 1963, 759; J. M. Conia und J. Salaün, Acc. Chem. Res. 5, 33 (1972); J. P. Barnier, J. M. Denis, J. Salaün und J. M. Conia, Tetrahedron 30, 1397 (1974).
- <sup>35)</sup> C. H. De Puy und F. W. Breitbeil, J. Am. Chem. Soc. 85, 2176 (1963).
- <sup>36)</sup> L. Eckes, Dissertation, Univ. Saarbrücken 1976.
- <sup>37)</sup> R. A. Sneen und J. V. Carter, J. Am. Chem. Soc. 94, 6990 (1972).
- 38) J. Salaün, J. Org. Chem. 43, 2809 (1978); H. Günther, NMR-Spektroskopie, S. 212, Georg Thieme Verlag, Stuttgart 1973; R. Kopp und M. Hanack, Chem. Ber. 112, 2453 (1979); S.
- A. Sherrod und R. G. Bergmann, J. Am. Chem. Soc. 93, 1925 (1971). <sup>39)</sup> M. Hanack, T. Bässler, W. Eymann, W. E. Heyd und R. Kopp, J. Am. Chem. Soc. 96, 6686 (1974); C. G. Wermuth und H. Marx, Bull. Soc. Chim. Fr. 1964, 732; V. M. Mićocić und M. L. J. Mihailović, J. Org. Chem. 18, 1190 (1953).

[163/85]